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Abstract. These are notes for a talk at the MFO Arbeitstagung ‘Topological
Cyclic Homology’ in April 2018. We give a definition of topologoical cyclic ho-
mology and cyclic K-theory for stable ∞-categories and relate the two notions by
an enhancement of the usual cyclotomic trace.
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1. Introduction

Most of the material presented here is based on ideas of Kaledin, Keller and
Blumberg-Mandell. An alternative definition of THH and the trace for stable ∞-
categories has been given by Ayala, Mazel-Gee and Rozenblyum.

Not in this note: symmetric monoidal, spectrally enriched.

2. Cyclic, paracyclic and epicyclic objects

We begin this note by recalling Connes cyclic category Λ. We first define a
related category Λ∞, the paracyclic category. It is defined as full subcategory of
the category of ordered sets with an order preserving Z-action in which morphisms
are non-decreasing equivariant maps. Then Λ∞ consists of those objects which are
isomorphic to 1

nZ with the obvious ordering and the Z-action by addition of integer.
1
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We denoted the object 1
nZ also by [n]Λ ∈ Λ∞ and by definition every object in Λ∞

is equivalent to one of those.
There is a canonical functor ∆ → Λ∞ which sends a non-empty linearly ordered

set S to the set Z × S with lexicographic ordering and Z action by addition in the
left factor. For every natural number k ≥ 1 we define a category Λk by identifying
certain morphisms in Λ∞, namely the quotient by the relation f ∼ f + k for k ∈ Z
(here the Z-action is written additively). Then the cyclic category is Λ1 =: Λ. The
object of Λ (resp. Λk) corresponding to 1

nZ is written as [n]Λ (resp. [n]Λk
). One

should think of Λ as consisting of cyclic graphs:

[1]λ ↭ 1 [2]λ ↭ 12 [3]λ ↭ 1

2

3
For every such cyclic graph with n nodes we have an associated ‘free category’
Tn ∈ Cat and then a map [n]Λ → [m]Λ in Λ corresponds to a functor Tn → Tm of
these categories that is a map of degree one of the circle after geometric realization.
Really the poset 1

nZ with its Z-action should be considered as the universal cover of
such a graph/category. In particular this assignment gives us a functor

(1) Λ → Cat [n]Λ 7→ Tn .

In a choice free way we can write this functor as sending a poset P ∈ Λ with Z-action
to the quotient category TP := P/Z where the poset P is considered as a category
and the quotient is taken in the category of categories.

The epicyclic category Λ̃ is by definition the subcategory of Cat consisting of
categories isomorphic to Tn for some n and functors that are surjective on objects
(equivalently: essentially surjective). Here we consider Cat as a 1-category neglect-
ing the existence of natural transformations (this is just for the combinatorics, the
default is of course to consider it as a 2-category). We denote the object correspond-

ing to Tn in Λ̃ by [n]Λ̃. There is by construction a functor Λ → Λ̃ and this functor is

faithful and essentially surjective, but not full. The main difference is that in Λ̃ we
have ‘degree k-maps’ [kn]Λ̃ → [n]Λ̃ for k > 0 that do not exist in Λ. The epicyclic
category was introduced by Goodwillie in an unpublished letter to Waldhausen 1987,
see also the discussion in [BFG94] for a generators and relations description of Λ̃.
By definition the functor (1) extends to a functor

Λ̃ → Cat [n]Λ̃ 7→ Tn .

Construction 2.1. Similar to the definition of Λ as a quotient of Λ∞ by a BZ-
action1 there is a combinatorial way to describe Λ̃ as follows. Consider the topo-
logical monoid T ⋊ N>0 which is the semidirect product of the circle T and the
multiplicative monoid of positive natural numbers where the latter acts on T by
sending n ∈ N>0 to the degree n map z ∈ T 7→ zn ∈ T. Another description of
the monoid T⋊N>0 is that it is homotopy equivalent to the monoid of self maps of
the circle T (considered as a homotopy type) consisting of maps that have positive
degree.

1Here BZ denotes the category with a single object and Z as endomorphisms. This is a monoid
object in Cat and it is not hard to see that the action of the integers on the hom sets of Λ∞ gives
an action of this monoid on Λ∞.
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There is an action of the monoid T ⋊ N>0 on the paracyclic category Λ∞. We
think of T ⋊ N>0 as the monoid (BZ)⋊N>0 in Cat and define the action of BZ as
acting by addition on the hom set (this is the action whose quotient is by definition
Λ). For a natural number n ∈ BZ⋊N>0 we define the action of n on Λ∞ by sending
a poset P with Z-action to the new object n ·P which is also P as a poset but where
the action of Z on P is given by acting with k ∈ Z by addition of nk. In other words,
we just pull back the action along the map Z → Z given by mutliplication with n.
In terms of standard objects this functor sends [k]Λ∞ to [nk]Λ∞ . It is then obvious
that this gives an action of BZ ⋊ N>0 on Λ∞.

Definition 2.2. For an action of an E1-space M on an ∞-category C we define
the lax quotient CℓM to be the total space of the Grothendieck construction (a.k.a.
unstraightening) of the associated functor BM → Cat∞.

We can describe CℓM informally as follows: objects of CℓM are given by objects
of C. A morphism c → c′ in CℓM consists of a pair (f,m) where m ∈ M and f is a
morphism in C from m · c to c′. By construction as a Grothendieck construction we
have a coCartesian functor CℓM → BM . If M happens to be a group then the lax
quotient is equivalent to the homotopy quotient ChM . In fact the homotopy quotient
ChM is always obtained from CℓM by Dwyer-Kan localizing at the set of coCartesian
edges [Lur09, Corollary 3.3.4.3].

We now want to investigate the lax quotient of the action of T ⋊ N>0 on the
∞-category NΛ∞. Note that since Λ∞ is a 1-category and the monoid T ⋊ N is a
homotopy 1-type the ∞-category (NΛ∞)ℓ(T⋊N>0) is a priori a 2-category. It turns
out that in this case it is an ordinary category. More precisely we have:

Lemma 2.3. There is an equivalence (NΛ∞)ℓ(T⋊N>0) ≃ NΛ̃.

Proof. We have an equivalence (BT)ℓN>0 ≃ B(T ⋊ N>0) which gives us by abstract
nonsense an equivalence

(NΛ∞)ℓ(T⋊N>0) ≃ ((NΛ∞)ℓT)ℓN>0
.

The lax orbits by T are equivalent to the homotopy orbits since T is a group. But
the homotopy orbits are equivalent to NΛ by definition of Λ and the fact that the
Z-action on hom sets is free. Thus we get that

(NΛ∞)ℓ(T⋊N>0) ≃ (NΛ)ℓN>0 .

Now this lax quotient is a 1-category since BN>0 and NΛ are. Then he claim follows
from the fact that functor of ordinary categories

Λ̃ → BN>0

which sends a morphism in Λ̃ to its degree is coCartesian and classified by the
N>0-action on Λ. This fact is elementary to verify. □

A corollary of Lemma 2.3 is that the geometric realization of Λ̃ is given by the
classifying space of the monoid T⋊N>0 since Λ∞ has contractible classifying space
(see [NS17, Appendix T]) . This result was first obtained in [BFG94].

Definition 2.4. Let C be an ∞-category. A functor NΛop → C is called a cyclic
object in C. The geometric realization of a cyclic object NΛop → C is by definition
the colimit (if it exists) over the ‘underlying’ simplicial object

N∆op → NΛop
∞ → NΛop → C.
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An epicyclic object is a functor NΛ̃op → C. The geometric realization of an epicyclic
object is similarly the realization of the underlying simplicial object.

One can show that the functor N∆ → NΛ∞ is final (see e.g. [NS17, Appendix
T]) so that the colimit defining the geometric realization of an (epi)cyclic object is
equivalent to the colimit over the associated paracyclic object Λop

∞ → Λ → C. The
crucial fact is that for every cyclic object in C the geometric realization inherits
a T-action (where T = S1 is the circle group) and for every epicyclic object the
realization inherits an action of the monoid T ⋊ N>0. Let us describe where this
action comes from: Restricting to the paracylic category defines functors

Fun(Λop, C) → Fun (Λop
∞ , C)

hT and Fun(Λ̃op, C) → Fun (Λop
∞ , C)

ℓ(T⋊N>0)

where T⋊N>0 acts on Fun(Λ̃op, C) by acting in the argument and where Dℓ(T⋊N>0)

for an ∞-category D with T ⋊ N>0-action denotes the lax fixed points, i.e. sections

of Dℓ(T⋊N>0) → B(T ⋊ N>0). One should think of Fun (Λop
∞ , C)hT as equivariant

functors and as Fun (Λop
∞ , C)ℓ(T⋊N>0) as ‘lax equivariant’ functors where C carries the

trivial action. The colimit gives functors

Fun (Λop
∞ , C)

hT → ChT ≃ CBT

and
Fun (Λop

∞ , C)
ℓ(T⋊N) → Cℓ(T⋊N>0) ≃ CB(T⋊N>0)

by [?] so that we obtain by composition the next result. 2

Proposition 2.5. For any ∞-category C that admits geometric realizations of sim-
plicial objects, geometric realization of cyclic and epicyclic objects canonically gives
functors

Fun(NΛop, C) → CBT and Fun(NΛ̃op, C) → CB(T⋊N>0) .

For a more point set treatment of epicyclic objects see [BFG94]. Since epicyclic
objects are not so well known we make a bit more explicit what it means to have
an epicyclic object and how to think of the action on the geometric realization.This
also shows the relation of cyclotomic structures discussed later and in [NS17]. For
the remaineder of the paper the following discussion is not relevant.

By definition every epicyclic object X : Λ̃op → C has an underlying cyclic object.
The additional structure that exist for an epicyclic object can be formulated as
follows: we can form the n-fold edgewise subdivision sd∗kX which is a k-cyclic object,
i.e. a functor Λop

k → C and is obtained by pullback along

sdk : Λk → Λ P 7→ k · P
where k · P is as before the same poset P but with Z-action multiplied by k. The
object k ·P carries a Ck-action where Ck is the cyclic group of order k. Thus we get
that the subdivision gives a functor

sdkX
∗ : Λop

k → CBCk .

Moreover this functor is BCk-equivariant where BCk acts on the source by the
quotient of the BZ-action on Λ∞ and on the target by left-multiplication on BCk
using that Ck is abelian. This follows from the fact that the functor sdk : Λk → ΛBCk

is BCk-equivariant which is straighforward to verify. Now we take homotopy fixed

2TODO: Check that there is no (−)op showing up somewhere here.
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points by Ck (assuming that they exist in C) i.e. postcompose with the functor
(−)hCk : CBCk → C. This functor is also BCk-equivariant. Therefore we obtain a
composition as in the upper horizontal line of the diagram

Λop
p

��

sdk // (Λop)BCk
XBCk

// CBCk
−hCk

// C

Λop

11

which is BCp-equivariant and therefore descends to a functor Λop → C. This is just
a fancy way of arguing that the diagram (sd∗kX)hCp is again a cyclic object. In a
point set model this can also be verified directly. The point is that the action of
N>0 on Λ∞ is precisely encoding this behaviour of the functor. Thus an extension
of a cyclic object X to a epicyclic object gives rise to a natural transformation

X → (sd∗kX)hCk

induced by the covering maps of degree k using that in Λ̃ we have that [nk]hCk
≃ [n].

After geometric realizing and using that sdk : Λ∞ → Λ∞ is final this gives a T-
equivariant map

ψk : |X| → |sd∗kXhCk | → |sd∗kX|hCk ≃ |X|hCk

where |X|hCk carries the residual T/Ck ≃ T-action. Conversely it is very easy
to verify that an action of T ⋊ N>0 on |X| is essentially given by a T-action on
|X| together with such a map ψk : |X| → |X|hCk for every k such that these maps
commute coherently (in the appropriate sense involving fixed points for the product).
In this sense the action of T ⋊ N>0 is essentially determined by the maps ψk.

3. Unstable topological Hochschild homology

Now we will use the notion of (epi)cyclic objects to give the definition of unstable
topological Hochschild homology. The word ‘unstable’ indicates that we work in
the ∞-category S of spaces. Later we will work in spectra to obtain topological
Hochschild homology. For an ∞-category D we denote by D∼ the maximal Kan
complex inside of D, i.e. the groupoid core.

Definition 3.1. For a small ∞-category C we define a space uTHH(C) ∈ SB(T⋊N>0)

as the geometric realization of the epicyclic object

Λ̃op → S [n]Λ̃ 7→ Fun (NTn, C)∼ .

Remark 3.2. One can check that for a given C there is an equivalence

Fun (NTn, C)∼ ≃ colim
c1,...,cn∈C∼

n∏
i=1

MapC(ci, ci+1)

where cn+1 = c1. This is the formula that we generalize for stable ∞-categories in
Section 6.

Now we want to compare this definition of unstable topological Hochschild homol-
ogy to the usual definition using the standard cyclic Bar construction. The reader
that does not want to get bothered with the details of this construction can just
take Proposition 3.3 below for granted.
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First we consider the category TAss which is the Lawvere theory of associative
monoids. By definition T op

Ass is the full subcategory of the category of all assoiative
monoids (in Set) which are free on a finite set S. Thus isomorphism classes are
labeled by natural numbers (including 0) and the sets of maps are given by the
sets of products of associative monoids. By definition TAss has finite products. An
associative monoid object M in the ∞-category of spaces is then given by a functor

M : TAss → S
which preserves finite products. This is not the definition in [Lur16] but equivalent
to it, as follows from [Cra10] or [GGN15, Appendix B]. Now there is a functor

j : Λ̃ → T op
Ass given by sending the object [n]Λ̃ to the free associative monoid on

n generators. A more precise way of defining j is as follows: let T∼
n → Tn be the

inclusion of the discrete category on the set of objects of Tn. This is natural in n,

i.e. gives rise to a functor Λ̃ → Cat∆
1
. Then we form the cofibre Tn/T∼

n of this map
in the 2-category Cat of categories 3 which is canonically a pointed object in Cat
and take the endomorphisms of the basepoint:

j([n]Λ̃) := EndTn/T∼
n
(pt) .

This is a monoid and can easily be seen to be free on n generators. In fact the
category Tn/T∼

n has up to equivalence on object and thus is determined by this
monoid. This construction of j makes the functoriality evident. The (epi)cyclic Bar
construction of M is then defined to be the composition

Λ̃op jop−−→ TAss
M−→ S .

Explicitly this means that the n-th level of this epicylic object is given by maps of
associative monoids from the free monoid on n-generators to M , i.e. Mn. Thus
one finds that the underlying simplicial object of this epicyclic object takes up to
equivalence the form

· · · //////

//
M ×M ×M ////// M ×M // // M

which is the usual form of the cyclic Bar construction. The point is that due to the
fact that we work in a Cartesian symmetric monoidal category the usual cyclic Bar
construction extends to an epicyclic object.

Proposition 3.3. If M is an associative monoid in the ∞-category S of spaces
then the space uTHH(BM) for the associated ∞-category BM is equivalent to the
geometric realization of the epicyclic Bar construction of M . This equivalence is
compatible with the induced T ⋊ N>0-actions.

Proof. The cofibre sequence (T∼
n )+ → (Tn)+ → Tn/T∼

n in (Cat∞)∗ gives by mapping
it to BM with the canonical basepoint rise to a fibre sequence of epicylic spaces

(2) Fun∗(Tn/T∼
n , BM)∼ → Fun(Tn, C)∼ → (BM×)n

where Fun∗ denotes functors under the ∞-category pt = ∆0. Since Tn/T∼
n is the

free monoid on n-generators (this is how j was defined) and since pointed functors
BM ′ → BM for monoids M and M ′ are equivalent to the space of maps of monoids
M → M ′ it follows that the first epicylic space is equivalent, as an epicyclic space
to the epicylic Bar construction of M as defined above. Therefore from the first

3For this cofibre it also does not matter if we consider Cat as a 1- or 2-category. In fact we could
even define it to be the cofibre in ∞-categories which is what we will use soon.
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map in (2) we get after realization a map from the realization of the epicyclic Bar
construction to uTHH(C). This map is automatically T ⋊ N>0-equivariant since it
comes from a map of epicyclic objects.

Every map of spaces X → BG where G is the classifying space of a group is
automatically of the form YhG → BG where Y is the fibre of the map X → BG. In
other words X is the homotopy quotient of a G-action on X. Similarly we see that
the map of epicylic objects

Fun∗(Tn/T∼
n , BM)∼ → Fun(Tn, BM)∼

is the homotopy quotient in epicyclic spaces by an action of the epicyclic group G• :
[n] 7→ (M×)n. Since geometric realization is a colimit this implies that uTHH(BM)
is the homotopy quotient of the geometric realization of the epicylic Bar construction
by an action of the realization of G•. But the realization of G• is contractible since
G• is contractible as a simplicial space which is easy to see (it for example admits
an extra degeneracy). In fact this is the standard model for the contractible space
EG. This concludes the proof. □

An immediate consequence of the definition of unstable cyclic homology the way
we defined it is the following well-known result of Goodwillie-Jones (which is in the
epicyclic version proven in [BFG94]).

Proposition 3.4. Let X be a space (i.e. a Kan complex) considered as an ∞-
category. Then we have an equivalence

uTHH(X) ≃ LX .

where LX = Map(T, X) is the free loop space of X. This equivalence is compatible
with the T ⋊ N>0-actions on both sides, where on the free loop space T ⋊ N>0 acts
through its action on T.

Proof. For X an ∞-groupoid we have that

Fun(NTn, X)∼ ≃ Fun (|NTn|, X) ≃ Map (T, X)

and the underlying simplicial object for varying n is constant. This shows that as
spaces without action we have the desired equivalence uTHH(X) ≃ LX. As an
epicyclic object we can describe

[n]Λ̃ 7→ Fun(NTn, X)∼ ≃ LX

by sending the cyclic operator on the n-th space to rotation by 2π
n . The map [kn]Λ̃ →

[n]Λ maps to the n-fold covering of S1. This is strictly true on the level of geometric
realizations of Tn and therefore on the geometric realization and thus implies the
claim. □

4. Coefficients and categories of endomorphisms

In this section we want to allow coefficients for uTHH similar to the fact that usual
Hochschild homology allows for bimodules as coefficients. This section is of rather
technical and combinatorial nature but will be essential for the later constructions
and definitions. The impatient reader can try to skip this section and only jump
back to it as needed.

The idea is to generalize the construction which takes an object [n]Λ and an ∞-
category C and produces the n-th layer of the cyclic Bar construction Fun(NTn, C)∼
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to allow for more general inputs. In fact we will define a ‘twisted’ variant that takes
as input a functor D → NTn and produces the space of sections

E (D → NTn) := FunNTn(NTn,D)∼

so that for D = C × NTn we get back the space of functors Fun(NTn, C)∼ as in the
definition of uTHH(C). Here FunNTn(NTn,D)∼ means the simplicial set of strict
sections and we will assume that D → NTn is.a categorical fibration, so that this
has the ‘correct’ homotopy type (i.e. equivalent to the space of homotopy coherent
sections). In fact we will impose a more restrictive condiiton.

Construction 4.1. We say that a functor X → NTn is a flat categorical fibration if
it is a categorical fibration as well as a flat fibration4 . We denote the full subcategory
of (Cat∞)/NTn

consisting of the flat categorical fibrations by (Cat♭∞)/NTn
. The

pullback of a flat categorical fibration is again a flat categorical fibration and thus
we have a functor

χ : NΛop → Cat∞ [n]Λ 7→ (Cat∞/NTn
)♭

obtained as straightening of the Cartesian fibration given as (Cat∞/Λ)
♭ → Λ where

(Cat∞/Λ)
♭ ⊆ Cat∞/Λ is the full subcategory consisting of flat fibrations. An altena-

tive way of construction this functor is by consructing it as a pseduo-functor using
the approach taken in [GHN15, Appendix A]. We leave the details to the reader.

Definition 4.2. We let ΛCat → NΛop be the total space of the coCartesian fibration
classified by the functor χ of Construction 4.1. We refer to object of ΛCat as labelled
cyclic graphs (labelled by ∞-categories and bimodules).

Remark 4.3. To understand how Definition 4.2 implements ‘cyclic graphs’ we note
that a flat categorical fibration p : X → ∆1 (over ∆1 this is equivalently to p being an
inner fibration and even to X being an ∞-category) is equivalent given by a colimit
preserving functor P(X1) → P(X0) where Xi = p−1(i).5 The flatness condition for a
fibration X → S ensures that the composition in S corresponds to the composition
of functors on presheaf categories. One should think of an object C → NTn in ΛCat

as giving a cyclic graph labelled with ∞-categories C1, . . . , Cn and colimit preserving
functors Fi : P(Ci+1) → IndP(Ci) for every i. We shall abbreviate such an object as

(F1, . . . , Fn) leaving the ∞-categories implicit or even as F⃗ and depict it as follows
(for n = 5):

4This means that for every 2-simplex ∆2 → S the induced map X ×S Λ2
1 → X ×S ∆2 is a

categorical equivalence., see [Lur16]
5Here P(Xi) = Fun(X op

i ,S) is the presheaf category. The datum of a colimit preserving functor
P(X1) → P(X0) is equivalent to a functor X1 × X op

0 → S, i.e. a profunctor (a.k.a. bimodule or
correspondence).
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C1

F1

C2
F2

C3

F3

C4
F4 C5

F5

Here the functors are really profunctors but we draw them as ordinary arrows. The
morphisms in ΛCat are generated by the following basic morphisms: composing
adjacent functors, inserting identities, rotations and (lax) maps of diagrams of fixed
shape. Lax means to for a given shape there are 2-cells allowed. For example if we
have two endoprofunctors F : P(C) → P(C) and G : P(D) → P(D) considered as an
object in (ΛCat)[1]Λ then a morphism in (ΛCat)[1]Λ corresponds to a pair of a functor
ϕ : C → D and a natural transformation η : ϕ! ◦ F → G ◦ ϕ! filling the diagram

P(C) F //

ϕ!
��

�� η

P(C)

Φ!

��

P(D)
G // P(D)

.

In particular for C = D and ϕ = id there are still morphisms of profunctors (aka
bimodules) built into ΛCat. This will become very important in Section 5.

Remark 4.4. Note that one can use the results of [BGN18] to give a very explicit
description of ΛCat since the classifying functor χ : NΛop → Cat∞ is itself obtained
by straightening (but with the different variance). This will give a description of ΛCat

in terms of a certain ∞-category of spans in Cat∆
1

∞ : objects are still flat categorical
fibrations X → NTn but a morphism from Z → NTn to X → NTn is given by a
span

X

��

Yoo

J

��

//

J

Z

��

NTi NTj
∼oo // NTk

where the left lower map is induced from an isomorphism in Λ and the right square is
a pullback square in Cat∞ (or even a strict pullback since the right vertical morphism
is a categorical fibration). We shall not need this explicit description here and thus
go with the abstract definition. But if one uses this explicit model then there is a
more direct proof of the next result.

Proposition 4.5. There is a functor

End : ΛCat → Cat∞

such that objectwise we have End(X → NTn) ≃ FunNTn(NTn, X).

Proof. We first construct a functor

χ∗ : NΛ
op → Cat∞ [n]Λ 7→ (Cat∞/NTn

)♭⋆
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where (Cat∞/Λ)
♭
⋆ denotes the ∞-category of flat fibrations equipped with a section.

More precisely the ∞-category (Cat∞/Λ)
♭
⋆ is constructed as follows:

Note that the∞-category (Cat∞/Λ)
♭
⋆ is not just the∞-category of pointed objects

in the ∞-category (Cat∞/Λ)
♭. Its rather the ‘lax slice’ under the point: objects

are pointed objects but morphisms only need to preserve the point just up to a
non-necessarily invertible 2-cell. In fact there is a non-full inclusion (Cat∞/Λ)

♭
∗ ⊆

(Cat∞/Λ)
♭
⋆ from pointed objects into our ∞-category.

This functor is obtained from the functor χ from Construction 4.1 by postcom-
posing with the functor that sends an ∞-category C which has a terminal object to
the ∞-category C∗ of pointed objects, which is the slices under the terminal object.
To apply this construction one has to invoke that (Cat∞/NTn

) has a terminal object
(namely the identity) and that this terminal object is preserved by pullback along
any map NTn → NTm. Now by construction there is.a natural forgetful transfor-
mation

χ∗ → χ

and for each object [n]Λ of Λ the functor

χ∗([n]Λ) = (Cat∞/NTn
)♭∗ −→ (Cat∞/NTn

)♭ = χ([n]Λ)

is itself a coCartesian fibration6. To see this we note that more generally for each
∞-category C with a terminal object pt the forgetful functor C∗ := Cpt/ → C is
coCartesian. We now invoke the dual of Proposition 9.6 of [GHN15] to deduce
that the functor from the total space X of the coCartertisian fibration X → NΛop

classified by χ∗ to the ∞-category ΛCat (which is the total space of the coCartesian
fibration classified by χ) is itself a coCartesian fibration. Thus it is classified by a
functor End : ΛCat → Cat∞ with the desired properties. □

Example 4.6. We have the object C×NT1 → NT1 of Λ
Cat which we will abbreviate

as C or more in line with the notation of Remark 4.3 as (idP(C)). We find that
End(C) ≃ Fun(NT1, C) is the ∞-category whose objects are given by pairs consisting
of an object c ∈ C together with an endomorphism c→ c. This is the most important
case for us. More generally for every n we have an equivalence End(C ×NTnNTn) ≃
Fun(NTn, C).

For a general cyclic graph of stable ∞-categories (F1, . . . , Fn) the ∞-category
End(F1, . . . , Fn) has as objects sequences of objects (ci ∈ Ci) together with mor-
phisms ci → Fi(ci+1).

Lemma 4.7. For an object C → NTn corresponding to the list of functors (F1, . . . , Fn)
there is an equivalence

End(F1, . . . , Fn)
∼ ≃ colim

ci∈C∼
i

n∏
i=1

MapP(Ci)(ci, Fici+1)

Proof. We consider the functor NT∼
n → NTn. Here T∼

n is is a discrete category on
n objects. Then we get an induced functor

FunNTn(NTn, C) → FunNTn(NT∼
n , C) ≃ C1 × . . .× Cn .

6Here we use coCartesian in the invariant way, meaning that any replacement by an inner
fibration is coCartesian in the sense of [Lur09]
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The induced map of spaces after taking groupoid cores take the form:

FunNTn(NTn, C)∼ → C∼
1 × . . .× C∼

n .

Every map of spaces with target S is the colimit of a classifying functor S → S.
Thus in our case get a functor C∼

1 × . . .× C∼
n → S . This functor is pointwise of the

form

(c1, . . . , cn) 7→
n∏
i=1

MapC(ci, ci+1) .

Finally we have MapC(ci, ci+1) ≃ MapP(Ci)(ci, Fici+1) by construction of the functors
Fi. □

Finally we can use the ∞-category ΛCat to give a definition of uTHH(C, F ) for an
∞-category C together with a colimit preserving functor P(C) → P(C), i.e. a flat
fibration over NT1, as follows: we claim that in this situation there is a simplicial
object

N∆op → ΛCat

which is informally given as

. . . (F, id, id)
//
//
// (F, id)

//
// F

and will be constructed more carefully in Construction 4.8 below. Then we define
uTHH(C, F ) as the colimit of the functor End(−)∼ applied to this diagram. More

generally for every object F⃗ = (F1, . . . , Fn) in ΛCat we get a simplicial object

. . . (F1, id, id, F2, id, id, . . . , Fn, id, id)
//
//
// (F1, id, F2, id, . . . , Fn, id)

//
// (F1, . . . , Fn) .

Note that these objects are neither cyclic, paracyclic or epicyclic but just simplicial
in general. Only if we input a list merely consisting of identities we do get the
additional structure. We will make this precise below.

Construction 4.8. There is a functor

r : Λop ×∆op → Λop

given by sending P ∈ Λ and S ∈ ∆ to P × S equipped with the lexicographic
ordering (first compare the entries in P and then those in S) and the Z-action in
the first factor. We want to construct a diagram of functors

ΛCat×N∆op R //

��

ΛCat

��

NΛop ×N∆op r // NΛop .

where S sends coCartesian lifts to coCartesian lifts. This is by definition the same
as a map of coCartesian fibrations

ΛCat×N∆op //

((

r∗ ΛCat

ww

NΛop ×N∆op

The two coCartesian fibrations are classified by the functors

χ1 : NΛ
op ×N∆op prΛop−−−→ NΛop χ−→ Cat∞
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and
χ2 : NΛ

op ×N∆op r−→ NΛop χ−→ Cat∞ .

We observe that there is a natural transformation of functors prΛop → r given by
the projection P ×S → P . This induces a natural transformation χ1 → χ2 and then
a functor as desired on coCartesian fibrations. Unfolding the definitions we see that

R : ΛCat×N∆op → ΛCat

sends a pair (S,D → NTP ) to the flat fibration pr∗D → NTP×S where pr is induced
by the projection map P × S → P .

Definition 4.9. We get a functor uTHH : ΛCat → S as the composite

ΛCat R−→
(
ΛCat

)N∆op End−−→ (Cat∞)N∆op (−)∼−−−→ SN∆op colim−−−→ S

By construction the composition Catst∞ → ΛCat → S is equivalent to the definition
of uTHH given above.

We end this section by giving the twisted version of the structure discussed at the
end of the first section.

Example 4.10. For every functor T : ΛCat → S we can form a new functor T hCp :
ΛCat → S informally defined as follows:

T hCp
(
F⃗
)
= T

(
F⃗ , F⃗ , . . . , F⃗︸ ︷︷ ︸

p times

)hCp

The functoriality of this construction is given as follows: first we claim that the
morphism

sdp : Λp → Λ [n]Λp → [n]Λ

lifts to a functor Λst
p → Λst given by sending X → Tn to the flat stable fibration

w∗X → (pn) where w : (pn) → (n) where w is the map that wraps around p-times.
In fact this functor moreover lifts to a BCp-equivariant functor

Λst
p → (Λst)BCp

so that we get an induced functor T hCp : Λst → Sp as in Section 3.

Example 4.11. There is a natural transformation E → EhCp sending a sequence
of morphisms (φ1, . . . , φp) to the p-fold iterate. Formally there is an equivalence of
the ∞-categories of sections

End(X → NTn) ≃ End(w∗X → NTpn)hCp

which gives the transformation.

5. Stable ∞-categories and stable theories

In this section we want to define a variant of uTHH as discussed in the previous
sections, called THH(C) where we replace C by a stable ∞-category and such that
THH(C) is a spectrum in contrast to the space uTHH(C). The idea is to define to
define THH(C) as the geometric realization of a cyclic object which is informally
given by

[n]Λ 7→ colim
c1,...,cn∈C∼

n⊗
i=1

mapC(xi, Fixi+1)(3)
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where mapC(−,−) denotes the mapping spectum in C. This generalizes the descrip-
tion in Remark 3.2.

We define an ∞-category of ‘labelled cyclic graphs’ Λst analogously to the ∞-
category ΛCat from above. Again, up to equivaelence, an object in Λst is given by
a cyclic graph labelled with stable ∞-categories C1, . . . , Cn and colimit preserving
functors Fi : IndCi → IndCi+1 for every i. As before we will abbreviate such an

object as (F1, . . . , Fn) leaving the stable ∞-categories implicit or even as F⃗ . To
make the definition precise we need the following notion.

Definition 5.1. Let X → S be a categorical fibration of simplcial sets. We say
that that it is a flat stable fibration if it is a flat categorical fibration, every fibre Xs

for s ∈ S is a stable ∞-category and for every edge s → s′ in S the induced map
Xop
s ×Xs′ → S is excisive in every variable separately 7. A functor X → X ′ of flat

stable fibrations over S is a functor of fibrations over S which is fibrewise exact. We
denote the ∞-category of flat stable fibrations over S (considered as a subcategory

of the slice category) by Stab♭/S.

As in Construction 4.1 there is a functor

χ : Λop → Cat∞ [n]Λ 7→ Stab♭/NTn

and we let Λst be the coCartesian fibration over Λop classifying it. We refer to objects
of Λst as cyclic graphs of stable ∞-categories.

Note that the coCartesian morphisms of Λst over Λop are compositions of con-
traction, insertion and rotation morphisms. In the following we will study functors
T : Λstab → Sp. In fact most of what we say makes sense for functors with target an
arbitrary ∞-category. In particular we will realize topological Hochschild homology
and cyclic K-theory in this paper as such functors. Let us start by an example.

Example 5.2. There is a functor Λst → ΛCat given by forgetting that a fibration is
stable. Then we get a resulting functor

E : Λst → ΛCat End−−→ Cat∞
(−)∼−−−→ S

Σ∞
+−−→ Sp .

which will be key for what will follow. We also get a natural transformation E →
EhCp .

Construction 5.3. For every sequence of stable ∞-categories (C1, . . . , Cn) we con-
struct a functor

n∏
i=1

FunL(IndCi, IndCi+1) → Λst

where FunL denotes colimit preserving (equivalently left adjoint) functors. It sends
the sequence (F1, . . . , Fn) to the object denoted in the same way in Λst.

Definition 5.4. Let T : Λst → Sp be a functor.

• T is called reduced if for every sequence of stable ∞-categories C1, . . . , Cn
the restriction of T to a functor

n∏
i=1

FunL(IndCi, IndCi+1) → Sp

7Such a functor is equivalently given by a colimit preserving functor IndXs′ → IndXs
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is reduced in every variable separately, i.e. sends the zero functor to a zero
object in Sp (as usual i is taken mod n)

• T is called stable if for every sequence of stable ∞-categories C1, . . . , Cn the
restriction of T to a functor

n∏
i=1

FunL(IndCi, IndCi+1) → Sp

is exact in every variable separately, i.e. sends pushouts in Funex(IndCi, IndCi+1)
to pullbacks in Sp.

Proposition 5.5. The inclusions

Funstab(Λst, Sp) ⊆ Funred(Λstab,Sp) ⊆ Fun(Λstab, Sp)

admit left adjoints T 7→ T stab and T 7→ T ptd such that

T st(F1, . . . , Fn) ≃ lim−→k
ΩnkT

(
ΣkF1, . . . ,Σ

kFn
)
.

and T red(F1, . . . , Fn) is given by the total cofibre of the n-cube

P{1, . . . , n} → Sp S ⊆ {1, . . . , n} 7→ T (F ′
1, . . . , F

′
n)

where F ′
i is given by Fi for i ∈ S and by the zero functor otherwise.

Proof. The idea is to use Theorem A.1 in the Appendix for the coCartesian fibration
Λst → Λop. To apply this we have to check in particular that for every fibre Λst

[n]

there is a localization of Fun
(
(Λst)[n],Sp

)
whose local objects are the ‘stable’ func-

tors. To see this we contemplate the fibre of Λst over [n]Λ ∈ Λ. On this fibre there is
an endofunctor which sends (F1, . . . , Fn) to (ΣF1, . . . ,ΣFn). Using this endofunctor
we can define the localization on the fibre and then use the result of the appendix
to extend it.

TODO
□

We will abusively denote the composite left adjoint

Fun(Λst,Sp) → Funstab(Λstab, Sp)

given by first making the functor reduced and then stable also by (−)stab. The results
above show that the restriction of the transformation T → T st to the subcategory

n∏
i=1

FunL(IndCi, IndCi+1) ⊆ Λst

exhibit T st |∏n
i=1 Fun

L(IndCi,IndCi+1)
as the exact (i.e. 1-excisive and reduced) approx-

imation of T |∏n
i=1 Fun

L(IndCi,IndCi+1)
.

Now we will try to understand the stable approximation Est to the functor E :
Λst → Sp as discussed above. To this end we will need the following result.

Lemma 5.6. Let C be a stable ∞-category with an object c ∈ C. Then the exact
approximation of the functor

Σ∞
+ MapC(c,−) : C → Sp

is given by the mapping spectrum functor

mapC(c,−) : C → Sp .
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Proof. Let us first recall that the mapping spectrum functor C → Sp can be char-
acterised (and defined) as follows: it is the unique product preserving functor
F : C → Sp with the property Ω∞F ≃ MapC(c,−). This works since the func-
tor

(Ω∞)∗ : Fun
LEx(C,Sp) → FunLEx(C,S)

is an equivalence of ∞-categories, where FunLEx are left exact, i.e. finite limit
preserving functors. Adjoint to the equivalence MapC(c,−) ≃ Ω∞F we get a map
p : Σ∞

+ MapC(c,−) → F and we claim that this maps exhibits F as the exact ap-
proximation. It suffices to verify the universal property. Thus let G : C → Sp be
an exact (equivalently right exact0 functor. Then we get the following commutative
diagram

Map(F,G) ≃
Ω∞

∗ //

p∗

��

Map(Ω∞F,Ω∞G)

≃
��

Map(Σ∞
+ MapC(c,−), G)

≃ // Map(MapC(c,−),Ω∞G)

which shows that the left vertical map is an equivalence. □

Proposition 5.7. The exact approximation to the functor E : Λst → Sp of Example
5.2 is pointwise given by

Est(F1, . . . , Fn) ≃ colim
c1,...,cn∈C∼

n⊗
i=1

mapC(xi, Fixi+1) .

Proof. By what we have shown above the functor Est(F1, . . . , Fn) as a functor in
F1, . . . , Fn, i.e. from

n∏
i=1

FunL(IndCi+1, IndCi) → Sp

is the exact (in the multivariabe sense) approximation to E(F1, . . . , Fn). But for the
latter we have the formula

colim
c1,...,cn∈C∼

n⊗
i=1

Σ∞
+ MapC(xi, Fixi+1)

so that we have to compute the exact approximation (in Fi) to this one. Since
colimit is exact and the tensor product is exact in each variable this comes down to
compute the exact approximation to the functor

Σ∞
+ MapC(xi,−xi+1) : FunL(IndCi+1, IndCi) → Sp

for fixed xi and xi+1. This is then essentially by the last Lemma given by the
mapping spectrum so that he full claim follows. □

Remark 5.8. At this point wie note that every other construction of Est : Λst →
Sp would work equally well for what follows. In particular if one prefers to work
with strictly point-set enriched spectral categories on can give a much more direct
construction of Est (the author has not thought through all the details and how to
get the full functoriality, it would be interesting to see this spelled out).
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6. Topological Hochschild homology and trace theories

In the last section we have managed to product a functor

Est : Λst → Sp

that gives the ‘layers’ of the cyclic Bar construction. Thus we can now define topo-
logical Hochschild homology through the usual cyclic Bar construction as

THH(C) =
∣∣ . . . Est(idC , idC , idC)

//
//
// Est(idC , idC)

//
// Est(idC)

∣∣ .
In fact we can define THH now more generally.

Definition 6.1. We more generally define THH(F1, . . . , Fn) as the realization of
the simplicial object

. . .
//
//
// Est(F1, id, F2, id, . . . , Fn, id)

//
// Est(F1, . . . , Fn)

where the simplicial object is obtained from the simplicial objects in Λst obtained
invoking the stable invariant of the functor R discussed in Construction 4.8 . This
gives us a functor

THH: Λst → Sp

which comes with a transformation Est → THH.

In particular we have a functor Catstab∞ → Stab♭/NT1
→ Λst sending C to

(idP(C)) = (C ×NT1 → NT1)

i.e. the cyclic graph

Cid

The composition with THH as defined above then gives THH for stable∞-categories.

Definition 6.2. A functor T : Λst → Sp is called a trace theory if it sends coCarte-
sian morphisms in Λst to equivalences in Sp. It is called a stable trace theory, if it
additionally is stable (see Definition 5.4).

For a trace theory T we have equivalences T (F ◦G) ≃ T (F,G) ≃ T (G,F ) ≃ T (G◦
F ). Thus it behaves like the usual cyclic invariance of the trace of an endomorphism.
This is the reason for the naming. In fact, for a trace theory T : Λst → Sp the values
in T (F ) for a single functor already determine all values, since we have

T (F1, . . . , Fn) ≃ T (F1 ◦ . . . ◦ Fn) .

The main point of the notion of trace theory is that the combinatorics of Λst encodes
some homotopy coherent way of expressing the ‘cyclic invariance’. Also note that
every coCartesian morphism is a composition of rotation, contraction and insertion
morphisms (since this is true in Λ). The rotations are equivalence in Λst and the
insertions are one sided inverses to contractions. Therefore to check that something
is a trace theory it suffices to check that contraction of two adjacent morphisms
induces an equivalence of spectra.
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Theorem 6.3. The functor THH : Λst → Sp is a stable trace theory. Moreover the
natural transformation E → THH exhibits THH : Λst → Sp as the universal stable
trace theory under E.

Proof. First stability for the functor THH is clear by construction, since the cyclic
Bar construction commutes with cofibre sequences.

First we will prove that THH is a trace theory. To this end we shall prove that
the morphism THH(F,G) → THH(F ◦G) for two functors

F : IndC → IndD and G : IndD → IndC
is an equivalence. The proof for two adjacent morphisms in a list then works exactly
the same (since the other morphisms will not be relevant). This then proves the
claim.

For the composition of arbitrary produnctors F and G and and objects d, d′ ∈ D
we can compute MapInd(D)(d, F (G(c)) as the geometric realization of the simplicial
object whose first three layers are

colim
c0,c1,c2∈C∼

(
mapInd(D)(d, Fc0)⊗map(c0, c1)⊗map(c1, c2)⊗mapInd(C)(c2, Gd

′)
)

//
//
// colimc0,c1∈C∼

(
mapInd(D)(d, Fc0)⊗map(c0, c1)⊗mapInd(C)(c1, Gd

′)
)

//
// colimc0∈C∼

(
mapInd(D)(d, Fc0)⊗mapInd(C)(c0, Gd

′)
)

and which continues in the obvious way (this is essentially the usual Bar resolution
of the tensor product of bimodules). We now plug this formula into the definition of
THH(FG) in combination with the formula for the layers of the cyclic Bar construc-
tion (see Lemma 5.7). This way we obtain a bisimplicial spectrum. The diagonal of
this bismplicial spectrum is exactly the cyclic Bar construction THH(F,G). Note
that we have built in the correct functoriality already (we are just verifying a prop-
erty of THH) so that the we have the maps a priori and do only need to verify a
pointwise equivalence. It follows that the canononical map THH(FG) → THH(F,G)
is an equivalence, since the colimit over ∆op ×∆op is equivalent to the diagonal col-
imit by siftedness of ∆.

Now we want to verify that the transformation E → THH exhibits THH as the
initial stable trace theory under E. This transformation factors by construction as

E → Est → THH .

We will show that Est → THH exbhibits THH as the initial trace theory under Est.
This is enough, since THH is also stable and since E → Est is the initial stable
theory. To do this we apply the criterion given in Proposition B.1. Taking the
cyclic Bar construction defines an endofunctor L : Fun(Λst, Sp) → Fun(Λst, Sp) with
a transformation id → L. For objects in the full subcategory Funtrace(Λst,Sp) the
map T → LT is an equivalence. Moreover there is an autoequivalence L2T → L2T
that flips the two directions of the bisimplicial functor that is realized to give L2T .
This flip translates between the two maps LT → L2T so that they are equivalent in
the arrow category and Proposition B.1 applies to give the claim. □

Remark 6.4. The definition of THH can also be given as an actual categorical trace
as follows: we consider the category PrLst of presentable stable ∞-categories and left
adjoint functors. It admits a (closed) symmetric monoidal structure constructed by
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Lurie. The tensor product corepresents functors C×D → E that preserve colimits in
both variables separately. It turns out that every compactly generated ∞-categories
is dualizable when considered as an object in PrLst. In particular for every small ∞-
category X the ∞-category P(X) ∈ PrLst of presheaves is a dualizable object. But
for every dualizble object in an ∞-category and every endomorphism one can form
a trace. In our case an endomorphism is a colimit preserving functor F : P(X) →
P(X) and the trace is then a colimit preserving functor from the tensor unit to itself.
The tensor unit in PrLst is Sp, the ∞-category of spectra. Thus an endomorphism is
essentially the same as a spectrum. Therefore we get that the trace of F is given by
a spectrum. One can show that this trace is equivalent to THH(F ) as defined above.
Then the equivalence THH(F ◦ G) ≃ THH(G ◦ F ) is literally the cyclic invariance
of the trace. It is a bit tricky in this approach to get the functoriality of the trace
as we need it (however, see [BN13, Section 2.4 and 2.5] for nice discussion of that).

Proposition 6.5. For every trace theory T and every functor F : IndC → IndC
there is a Cn-action on T (F ◦ . . . ◦ F ) ≃ T (F, . . . , F ) which extends to a T-action
for F = id.

Proof. The first claim is obvious since T (F◦. . .◦F ) is by the trace property equivalent
to T (F, . . . , F ) which has a Cp-action since the object (F, . . . , F ) ∈ Λst carries a Cp-
action. For the second we observe that T (idC) is equivalent to the colimit of the
cyclic diagram [n] 7→ T (idC , . . . , idC) (with n-identities) since all structure maps are
equivalences. Thus it gets an induced T-action as the realization of a cyclic object.
By subdividing this cyclic object we see that the action is compatible with the one
on T (id, . . . , id). □

Proposition 6.6. For every trace theory T : Λst → Sp the induced functor

T : Catstab∞ → Λst → Sp

is Morita invariant, that is for an exact functor F : C → D of stable ∞-categories
which is an equivalence after idempotent completion the induced map T (C) → T (D)
is an equivalence.

Proof. Being an equivalence after idempotent completion means that we have an
inverse functor G : IndD → IndC such that G ◦ F ≃ idIndC and F ◦G ≃ idIndD. We
then have

T (C, id) ≃ T (C, G ◦ F ) ≃ T (D, F ◦G) ≃ T (D, id)
which shows the claim. □

We recall that a Verdier sequence of stable ∞-categories is a sequence of stable
∞-categories C → D → E such that the composition is the zero functor (this is a
property and not extra structure) and such that it is a fibre and cofibre sequence in
Catst∞.

Proposition 6.7. Let T : Λst → Sp be a stable trace theory. Then for every Verdier
sequence C → D → E of stable ∞-categories the induced sequence

T (C) → T (D) → T (E)
is a fibre sequence of spectra.

Proof. The induced sequence

Ind(C) i−→ Ind(D)
p−→ Ind(E)
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is a split Verdier sequence, that is there are right adjoints to Rp to p and Ri to i such
that the unit id → Ri ◦ i as well as the counit p ◦ Rp → id are equivalences (these
exist by the adjoint functor theorem). Then we get a cofibre sequence of functors

i ◦Ri → idInd(D) → Rp ◦ p

using the properties of a Verdier sequence. 8 Now for every functor T : Λst there is
a diagram

T (C) //

≃
��

T (D) //

=

��

T (E)

≃
��

T (Ri ◦ i)

��

// T (idInd(D)) //

��

T (p ◦Rp)

��

T (Ri, i) // T (idInd(D), idInd(D)) // T (p,Rp)

T (i ◦Ri)

OO

// T (idInd(D)) //

OO

T (Rp ◦ p)

OO

which commutes since the corresponding diagram in Λst commutes as can be easily
checked. In fact it commutes with the respective nullhomotopies of the horizontal
lines, which can be seen by putting in every line an additional object T (0Ind(D))
respectively T (0Ind(D), 0Ind(D)) so that every line becomes square (but which we do
not want to draw to keep the diagram simpler). Now if T is a trace theory then
all the horizontal maps are equivalences and if T is stable then the lower vertical
sequence is a cofibre sequence. □

One can get a more general result for localization sequences where coefficients or
more generally cyclic graphs are allowed we will discuss that in the next section.

Corollary 6.8. For every stable ∞-category THH(C) = THH(idC) carries canon-
ically a T-action. For every functor F : IndC → IndC the spectrum THH(F p) ≃
THH(F, . . . , F ) carries a Cp-action. Moreover THH is Morita invariant and local-
izing 9.

We now can form the spectrum THH(F⃗ , . . . , F⃗ )tCp . This assignment again forms
a functor Λst → Sp in a non-trivial way (refer to the discussion above).

Proposition 6.9. The functor F⃗ 7→ THH(F⃗ , . . . , F⃗ )tCp is a stable trace theory.

Proof. Clearly it is a trace theory since for every contraction in F the induced mor-
phism can (before taking Tate) be written as an p-fold composition of contractions
and is thus an equivalence. For stability we use the usual fact about Tate of a
multilinear functor being exact. □

8Such a situation is called a semi-orthogonal decomposition, one should think of Ind(E) as local
objects for a Bousfield localization and Ind(C) as the acyclic objects.

9Localizing for a functor Cat∞ → Sp means that it sends Verdier sequence to fibre sequences of
spectra. Under the additional assumption of Morita invariance this is equivalent to the notion of
localizing discussed in [BGT13, Definition 8.1]
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Now we get an induced transformation of functors Λst → Sp as in the diagram

E //

��

THH

φp∃!
��

EhCp // THHtCp

.

where the left hand map is given in ... After evaluation on C this gives us a T-
equivariant map

φp : THH(C) → THH(C)tCp .

for every stable ∞-category C. This shows that THH(C) is a cyclotomic spectrum.
But the transformation is more general since it also gives some information for THH
with coeffiicients: for an endofunctor F : IndC → IndC we get a map

THH(F ) → THH(F, . . . , F )tCp ≃ THH(F ◦ . . . ◦ F )tCp

generalizing the cyclotomic Frobenius. This extension of the Frobenius will be used
in Section ?? to generalize the Definition of TR to a setting with coefficients.

Corollary 6.10. The functor THH : Catst∞ → Sp extends to a functor

THH : Catst∞ → CycSp

where CycSp is the ∞-category of cyclotomic spectra. This functor is Morita in-
variant and localizing (i.e. sends Morita equivalences to equivalences and Verdier
sequences to cofibre sequences). Therefore also the composite

TC : Catst∞ → CycSp → Sp

is Morita invariant and localizing.

At this point we could directly deduce as in [BGT13, Section 10] that there is a
natural transformation from the K-theory functor K → TC, since by construction
we have a natural transformation of the functor Σ∞(−)∼ : Catst∞ → Sp to TC and
K-theory has a universal property. This is a ‘construction’ of the cyclotomic trace.
We will instead give in the next sections a more highly structured version of the
trace and deduce the existence of the classical trace from that.

Remark 6.11. A trace theory is by definition a functor Λst[coCart−1] → Sp where
Λst[coCart−1] denotes the Dwyer-Kan localization of Λst at the coCartesian edges.
But this Dwyer-Kan localization is just the colimit over the classifying functor

χ : Λop → Cat∞ [n]Λ 7→ Stab♭/NTn
.

We can should think of Stab♭/NTn
as a lax version of the category of functors

Fun(NTn,Catst∞)

A more preise statement is that the latter functor category is equivalent to the
subcategory of Stab♭/NTn

consisting of the coCartesian fibrations and maps that

preserve coCartesian lifts. So we are taking a colimit over a cyclic object in Cat∞
that looks very much like the unstable cyclic Bar constriction of Section 3.1. The
colimit over Λ for a cyclic object is actually the homotopy orbits for the canonical
T-action on the geometric realization of the cyclic object. This together tells us that
we should think of Λst[coCart−1] as a 2-categorical version of THH applied to the
(∞, 2)-category Catst∞.
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7. Additivity and localizing theories

In this section we want to generalize the property of having localization sequences
that we have established for every trace theory in Proposition 6.7 to arbitrary coef-
ficients. We say that a sequence

X → Y → Z

of stable flat fibrations over NTn (considered as a sequence in Λst over [n]Λ ∈ Λop)
is a Verdier sequence if for every object k ∈ NTn the sequence

Xk → Yk → Zk
is a Verdier sequence of stable ∞-categories and the maps X → Y and Y → Z are
strict. We say that a Verdier sequence X → Y → Z in Λst is split if for every object
k ∈ NTn the sequence

Xk → Yk → Zk
is split Verdier, i.e. the functor Yk → Zk (equivalently the morphism Xk → Yk)
admits a right adjoint.

Example 7.1. A Verdier sequence C → DE of stable ∞-categories is also a Verdier
sequence when considered as a sequence in Λst. More precisely that is the seuqence

C ×NT1 → D ×NT1 → E ×NT1 .

More generally, if we have a Verdier sequence of stable ∞-categories C i−→ D p−→ E
and a diagram

IndC
Ind(i)

//

F
��

IndD

G
��

Ind(p)
// IndE

H
��

IndC
Ind(i)

// IndD
Ind(p)

// IndE
that commutes, i.e. the natural transformations filling the squares are equivalences.
Then we get an induced Verdier sequence X → Y → Z over NT1 in Λst where X is
classifed by the bimodule F , Y by G and Z by H. For F = id, G = id and H = id
this reduces to the previous example.

In view of the last example (with identities) the following Proposition is a gener-
alization of Proposition 6.7 above.

Proposition 7.2. For every stable trace theory T : Λst → Sp and every Verdier
sequence X → Y → Z the induced sequence

T (X) → T (Y ) → T (Z)

is a cofibre sequence of spectra.

Proof. The proof proceeds exactly as the proof of Proposition 6.7. First of all, we
note that for a Verdier sequence in Λst written as

(F1, . . . , Fn) → (G1, . . . , Gn) → (H1, . . . ,Hn)

the induced sequence

(F1 ◦ . . . ◦ Fn) → (G1 ◦ . . . ◦Gn) → (H1 ◦ . . . ◦Hn)
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is a Verdier sequence in Λst as follows directly from the definition. Since the diagram

T (F1, . . . , Fn) //

≃
��

T (G1, . . . , Gn) //

≃
��

T (H1, . . . ,Hn)

≃
��

T (F1 ◦ . . . ◦ Fn) // T (G1 ◦ . . . ◦Gn) // T (H1 ◦ . . . ◦Hn)

is commutative and the vertical maps are equivalence we can this reduce to the claim
to Verdier sequences in Λst over NT1. These are of the form described in Example
7.1 above. Thus let us assume we have such a Verdier squence

(4) IndC i //

F
��

IndD

G
��

p
// IndE

H
��

IndC i // IndD
p

// IndE
(where we write i and p instead of Ind(i) and Ind(p) to simplify the notation. Just
from the fact that C → DE is a Verdier sequence of stable ∞-categories we see as in
the proof of Proposition 6.7 that we have a fibre sequence of functors

i ◦Ri → idInd(D) → Rp ◦ p
where Ri and Rp are the right adjoints to i and p. Applying the functor G to this
sequence we get an induced sequence

G ◦ i ◦Ri → G→ G ◦Rp ◦ p
which induces then a fibre sequence

(5) T (G ◦ i ◦Ri) → T (G) → T (G ◦Rp ◦ p) .
We now use the commutativity of the diagram (4) and the trace property for T to
compute the first term:

T (G ◦ i ◦Ri) ≃ T (i ◦ F ◦Ri) ≃ T (Ri ◦ i ◦ F ) ≃ T (F ) .

Similarly we get

T (G ◦Rp ◦ p) ≃ T (Rp ◦ p ◦G) ≃ T (Rp ◦H ◦ p) ≃ T (p ◦Rp ◦H) ≃ T (H) .

Moreover a straightforward variant of the diagram given in the proof of Proposition
6.7 shows that under these equivalences the sequence (5) is equivalent to the sequence
T (F ) → T (G) → T (H) in question. □

Definition 7.3. A theory T : Λst → Sp is called additive if it sends sends all the
objects 0× NTn → NTn ∈ Λst to a zero object in spectra and split Verdier sequnces
to fibre sequences of spectra. it is called localizing if it moreover sends arbitrary
Verdier sequences to fibre sequences in Sp.

Remark 7.4. There is in principle also a way of defining localizing theories without
the assumption that 0 × NTn → NTn ∈ Λst is sent to 0. Then one has to impose
that for a Verdier sequence considered as a square where one corner is zero that the
induced square is Cartesian. We will not need this generality here.

Note that if a theory T sends 0×NTn → NTn ∈ Λst to zero, this does not imply
that T is reduced in the sense of Definition 5.4. A counterexample is given by K-
theory of endomorphisms, see the remarks at the begining of Section 9. But the
converse is true: if T is reduced then T (0×NTn → NTn) ≃ 0.
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Finally we shall a variant of the S• construction from K-theory adapted to our
category Λst. This will be relevant in establishing the universal property if cyclic
K-theory in the next section. Since it is of rather technical nature we advise the
reader to skip it on first reading.

Construction 7.5. Let X → NTn ∈ Λst be a flat stable fibration. We define
a new flat stable fibration SkX → NTn as follows: the ∞-category SkX is a full
subcategory of the ∞-category P obtained as the pullback of simplicial sets

P //

��

Fun(Arr(∆k),X )

��

NTn
const // Fun(Arr(∆n),NTn)

Then SkX ⊆ P is the full subcategory consisting of those functors F : Arr(∆k) → Xi
(where i ∈ NTn) that lie in the usual Sk-construction of Xi, i.e. that have the
following properties: F (idy) ≃ 0 for each y ∈ ∆k and the square

F (x < y) //

��

F (x < z)

��

F (y = y) // F (y < z)

is Cartesian for each triple x < y < z in ∆k.
Informally SkX is given as follows: we write X as (F1, . . . , Fn), then SkX is

(FSk
1 , . . . , FSk

n ) where
TODO!

Lemma 7.6. For every additive theory T : Λst → Sp the induced functor ...

8. K-theory of endomorphisms

In this section we want to give the definition of cyclic K-Theory. Let us first
review K-theory of endomorphisms. For a ring R we can form an ordinary category
E whose objects are pairs consting of a finitely generated projective R-module M
togerther with an endomorphism f : M → M . This category has a notion of short
exact sequences (but note that not every of these sequences is split, since the split
that exists on underlying modules might not be compatible with the endorphisms).
Then we can take exact K-theory of this category and obtain a spectrum

KEnd(R) := K(E) .
We will generalize and study this in the setting of stable ∞-categories below but
let us first give the reader a bit of a feeling for KEnd(R). More precisely we will
focus on KEnd

0 (R) := π0K
End(R). By construction KEnd

0 (R) is the abelian group
generated by isomorphism classes of endomorphism f : M → M subject to the
relations f = f ′ + f ′′ whenever there is a diagram

M ′ i //

f ′

��

M
p
//

f
��

M ′′

f ′′

��

M ′ i // M
p
// M ′′

of projective R-modules such that M ′ →M →M ′′ is exact.
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Example 8.1. Assume that R = k is an algebraically closed field. Then every
endomorphism f has a Jordan normal form which is an upper triangular matrix.
Thus up to filtration f agrees with its diagonal part, therefore the element [f ] ∈
KEnd

0 (k) is represented by a diagonal matrix. The only invariant of f that is left
are therefore the diagonal entries λ1, . . . , λn, but not their ordering, i.e. the set of
Eigenvalues and the dimension of the respective Jordan blocks . We can consider
the associated element

∑n
i=1 λi in the free abelian group Z[k]. Really Z[k] is the

monoid ring with respect to the multiplicative monoid of k if one takes multiplicative
structures onK-theory of endomorphisms into account. This defines an isomorphism

KEnd
0 (k) ≃ Z[k] .

A slightly different way of phrasing the result is to consider the characteristic poly-
nomial

χf (t) := det (id− tf) =
n∏
i=1

(1− tλi) ∈ k[t] .

(note that we define this with t at a different spot than usual). This assignment
sends short exact sequence of endomorphism to products so that it induces a map

χ : KEnd
0 (k) → k(t)

where k(t) is the field of rational functors. In fact χ surjects onto the multiplicative
groupsWrat(k) of rational functions which are quotients of polynomials with constant
term 1. This group can be considered as a subgroup of the multiplicative group
t+tk[[t]] of power series with constant term 1 which is the underlying additive group
of the ringW (k) of Witt vectors. The map χ sends tensor product of endomorphisms
to the product in the Witt vectors and one can show that Wrat(k) is a subring. The
map χ is of course not injective since it does not see the eigenvalues 0. But the
combination

(χ,dim) : KEnd
0 (k) →Wrat(k)× Z

is an isomorphism. Note that this is with the above description compatible by noting
that Wrat(k) ≃ Z[k×] and Z[k] ≃ Z[k×] × Z where the latter isomorphism uses the
projection in the first factor and the augmentation in the second factor.

Example 8.2. For a general commutative ring R we still have the map

(χ,dim) : KEnd
0 (R) →Wrat(R)⊕K0(R)

and it is a theorem of Almkvist that this is always an isomorphism [Alm74].

Lets now come back to formal properties of K-theory of endomorphisms. Note
that instead of working with endomorphisms of projective R-modules one could also
pass to the derived ∞-category Dperf(R) of perfect complexes and form the category
End(Dperf(R)) in the sense of Section 4. This is the ∞-category whose objects are
just perfect chain complexes over R equipped with an endomorphism. Equivalently
it is the functor category Fun(NT1,Dperf(R)) which is a stable ∞-category and we
can take K-theory of this stable ∞-category10 . It is a theorem of Blumberg-Gepner-
Tabuada [BGT16] that these two possible definitions of KEnd agree, i.e. that

KEnd(R) ≃ K(End(Dperf(R))) .

10Here K-theory always refers to connective K-theory. There is of course also a non-connective
version but that will only play a minor role here.
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This generalized the classical Gillet-Waldhausen result that K-theory of projective
R-modules is equivalent to K-theory of the stable ∞-category Dperf(R) of perfect
complexes (which was initial proven in a slightly different language of course).

Definition 8.3. We define a functor KEnd : Λst → Sp as the composition

Λst End−−→ Catstab∞
K−→ Sp

where K refers to the connective K-theory spectrum. Since the functor K : Catstab∞ →
Sp comes with a natural transformation (−)∼ → Ω∞K the composition of End with
the adjoint gives us a natural transformation E → KEnd.

Theorem 8.4. The theory KEnd : Λst → Sp is additive. Moreover the morphism
E → KEnd exhibits it as the universal additive theory under E.

Proof. TODO . □

9. Cyclic K-theory

In the last section we have seen that KEnd : Λst → Sp is additive. We would like
it to be a trace theory. Unfortunately it is not a trace theory as we will see soon.

Lemma 9.1. Assume that we have a trace theory T such that T (0×NT1 → NT1) ≃
0. Then T is reduced in the sense of Definition 5.4.

Proof. For any stable ∞-category C we consider the following zero functors

01 : IndC → IndC 02 : IndC → 0 03 : 0 → IndC
where 0 denotes the zero category, which is equivalent to Ind(0). We have in par-
ticular 01 ≃ 03 ◦ 02. We now find for any list (F1, . . . , Fn) that contains a zero
functor

T (F1, . . . , Fn) ≃ T (01) ≃ T (03, 02) ≃ T (02 ◦ 03) ≃ T (0×NT1 → NT1) ≃ 0

which shows the claim. □

Clearly we have that KEnd(0 × NT1 → NT1) ≃ 0. Thus if KEnd were a trace
theory it had to be reduced. But it is not reduced :we get for any stable ∞-category
C that KEnd(0IndC) ≃ K(C) since End(0IndC) ≃ C. We account for this failure by
making KEnd reduced and then it will turn out that the result is in fact a trace
theory.

Definition 9.2. The functor Kcyc : Λst → Sp is the universal reduced functor under
KEnd, i.e. Kcyc := (KEnd)red with the Notation of Proposition 5.5.

Note that Proposition 5.5 gives us a concrete formula how to obtain Kcyc(F1, . . . , Fn).
In particular for a single functor F : IndC → IndC (i.e. the identity) we get that

Kcyc(F ) ≃ KEnd(F )/K(C) .

Note that he map for which we take the cofibre K(C) = KEnd(0) → KEnd(F ) is given
by sending an object to the object with the zero endomorphism.

Example 9.3. For a commutative ring R we have an isomorphism

Kcyc
0 (R) ≃Wrat(R)

which immediately follow from the description in Example 8.2.
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As in this example, the map by which we take the cofibre is always split by the
functor that forgets the endomorphism. Therefore the quotient defining Kcyc(F )
is really splitting off a summand. A similar remark is true for the reduction of
an arbitrary functor and an arbitrary list of functors (F1, . . . , Fn). The value
Kcyc(F1, . . . , Fn) is according to Proposition 5.5 given by the total cofibre of a cube.
But it turns out that in this example this can be drastically simplified:

Lemma 9.4. The value Kcyc(F1, . . . , Fn) is equivalent to the cofibre of the map

K C1 × . . .×K Cn ≃ KEnd(0IndC1 , . . . , 0IndCn) → KEnd(F1, . . . , Fn) .

Proof. As mentioned above, there is an a priori formula for Kcyc(F1, . . . , Fn) by the
total cofibre of an n-cube. The initial vertex of this cube of spectra is

KEnd(0IndC1 , . . . , 0IndCn)

and the terminal vertex is KEnd(F1, . . . , Fn). Thus to deduce the result it suffices to
show that every edge of this cube which does not end in the terminal vertex is an
equivalence. This comes down to checking that all the maps

KEnd(0IndC1 , . . . , 0IndCn) → KEnd(F1, . . . , Fn)

are equivalences as soon as one of the F ′
is is zero. We assume without loss of

generality that Fn = 0. On the level of categories the map in question corresponds
to the fully faithful inclusion

C1 × . . .× Cn → End(F1, . . . , Fn)

and for Fn = 0 the target category is equivalent to ... TODO. □

Now we come to the main result of this section. A variant of this theorem is due
to Kaledin in unpublished work (at least the first part, but we are not entirely sure
what his precise results are).

Theorem 9.5. The theory Kcyc : Λst → Sp is an reduced and addtive trace theory.
Moreover the morphism E → KEnd → Kcyc exhibits it as either of the following:

(1) the universal reduced and additive theory under E
(2) the universal additive trace theory under E.

Proof. By construction Kcyc is reduced. The additivity follows from the fact that
KEnd is additive (see Theorem 8.4) as follows: for a given split Verdier sequence

(6) (F1, . . . , Fn) → (G1, . . . , Gn) → (H1, . . . ,Hn)

we consider the sequence

(0, . . . , 0) → (0, . . . , 0) → (0, . . . , 0)

where source and target of the zero funcrtors are exactly the same as for the sequence
above, In other words: we just replace any of the funtors by 0. Then this is also a split
Verdier sequemce and thus also induces a short fibre sequence after applying KEnd.
In fact the latter fact can be seen much easier, since the category of endomorphisms
is just a product of the respective fibre sequnces, so that we get a producft of fibre
sequence which is a fibre sequence. But according to Lemma 9.4 above we then get
Kcyc applied to the Verdier sequence 6 as the cofibre of these two fibre sequence,
this it is a fibre sequence as well.
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To show that Kcyc is a trace theory we have to prove that for two functors F :
Ind(D) → Ind(E) and G : Ind(C) → Ind(D) we have that the ma[

Kcyc(. . . , F,G, . . .)
≃−→ Kcyc(. . . , F ◦G, . . .)

is an equivalence where the dots indicate some other functors. For simplicity of
notation we omit these other functors, assume that E = C and show that

Kcyc(F,G) ≃ Kcyc(F ◦G)

but the general proof works exactly the same. Recall that by definition and Lemma
9.4 we have a diagram

K(D)⊕K(C)

��

//// K(D)

��

KEnd(F,G) //

��

KEnd(FG)

��

Kcyc(F,G) // Kcyc(F ◦G)

in which the vertical lines are fibre sequences. We want to show that the lower
horizontal map is an equivalence. This is equivalent to showing the the upper square
is a pullback which is equivalent to showing that the induced map from K(C) to the
fibre of KEnd(F,G) → KEnd(FG) is an equivalence. But this follows from the fact
that this map is induced from the Verdier sequence

C → End(F,G) → End(FG)

whose first map takes c ∈ C to the pair (c, 0) with the zero morphisms and whose
second map forgets the object in C and composes the morphisms.

Finally we want to show the universal properties of Kcyc: the universal property
1 is true by the fact that KEnd (Theorem 8.4) is the universal additive theory and
that Kcyc is defined to be the associated reduced theory (which is still additive as
shown above).

The universal property (2) then follows from the first and Lemma 9.1 since every
additive trace theory is automatically reduced.

□

Corollary 9.6. For every stable ∞-category C there is a canonical action of T on
Kcyc(C). Moreover since (Kcyc)hCp is an additive theory as we get for every integer
p (not necessarily a prime here) a canonical map ψp in the diagram

E //

��

Kcyc

ψp∃!
��

EhCp // (Kcyc)hCp

.

These maps give Kcyc(C) the structure of a cyclotomic spectrum with Frobenius lifts.

The author learned the existence of the T-action on KEnd(C) from a talk of Dimity
Kaledin [?] and also wants to thank Peter Scholze for pointing this out to him. It is
very surprising that this T-action exists.
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Remark 9.7. There is a variant of the category End(C) for an arbitrary stable ∞-
category called the category of automorphisms (or better autoequivalences) which
is defined as

Aut(C) := Fun(T, C)
where T ≃ BZ here denotes the simplicial circle considered as a Kan complex (not its
classifying space). Thus an object in Aut(C) is given by an object of C together with
an automorphism. Clearly Aut(C) is a stable ∞-category and a full subcategory
of End(C). The functor Aut(−) can also be extended to Λst by taking the full
subcategory of End(F1, . . . , Fn) consisting of sequences of objects c1, . . . , cn together

with equivalences ci
≃−→ Fici+1 . Then KAut(C) is defined as K-theory of the stable

∞-category Aut(C) and more generally we get a functor as the composite

KAut : Λst Aut−−→ Catst∞
K−→ Sp .

Now for a stable ∞-category C there is an action of T directly on the ∞-category
Aut(C) = Fun(T, C) given by multiplication in the source. Informally a T-action on
an ∞-category is given by the choice of an automorphism for every object of the
∞-category 11. So roughly the action on Aut(C) is given by equipping every object,
which is an object of c with an autormorphism f with the automorphisms f itself.
Thus Aut(C) is exactly taylored to allow for such a T-action . Then by functoriality
of the K-theory functor we get an induced T-action on KAut(C). The T-action on
Aut(C) clearly does not extend to a T-action on End(C) so a similary trick can not
be used to directly get a T-action on KEnd(C)12. This fact makes the existence of
the T-action in Kcyc even more mysterious to the author.

There is another interesting aspect of K-theory of automorphisms: by construction
there are natural transformations KAut → KEnd → Kcyc and one can show that for
a field k the induced map

KAut(k) → Kcyc(k)

is an equivalence of spectra where KAut(k) = KAut(Dperf(k)) as usual. In general
this is not true and we believe that KAut is not even a trace theory.

We not want to establish a final piece of structure on the spectrum Kcyc(C) for
a stable ∞-category C and this will definitely not have an anlog for Kcyc applied
to a general object (F1, . . . , Fn) ∈ Λst. Recall that by the last result Kcyc(C) is a
cyclotomic spectrum. This means that we can take its topological cyclic homology.
But in fact, Kcyc carries more stucture, namely the Frobenius lifts which gives us
an action of the monoid T ⋊ N>0. In such a case, i.e. for a general spectrum with
a T ⋊ N>0 one has a refinement of TC, namely the homotopy fixed points for this
action and there is a canonical map

Xh(T⋊N>0) → TC(X)

where TC is taken with respect to the induced cyclotomic structure.

11But note that this has to satisfy some serious coherences, in particular these morphisms have
to commute with itself in an E2-way which is condition the author has problems imagining or
formulating an informal way.

12One could try to argue that there is an action by category BN instead which is a 2-categorical
concept. But since the K-theory functor is not a 2-functor (it takes the classifying space first which
definitely discards all non-invertible morphism) this can to the best knowledge of the author not be
used to get a T-action on the spectrum KEnd(C).
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Proposition 9.8. For every stable ∞-category C there is a canonical map

K(C) → Kcyc(C)h(T⋊N>0)

induced from the functor which takes an object M ∈ C to the object (M, idM ) ∈
End(C). Moreover this map is natural in C i.e. extends to a natural transformation
of functors Catst∞ → Sp.

Proof. TODO □

10. The cyclotomic trace

In this section we want to construct a variant of the cyclotomic trace which is
more highly structured than the usual variant. As a first step we note that until
now we have defined two important functors

Kcyc,THH : Λst → Sp

both of which admit transformations E → Kcyc and E → THH which satisfy uni-
versal properties: Kcyc is universal among additive theories under E and THH is
universal among stable trace theories under E. Since every stable trace theory is
additive as shown in 7.2 we immediately get the following result:

Theorem 10.1. There is a unique natural transformation

tr : Kcyc → THH

compatible with the maps from E. Moreover for every prime p the induced diagrams

Kcyc tr //

ψp
��

THH

φp

��

(Kcyc)hCp can // (Kcyc)tCp trtCp
// THHtCp

canonically commute.

Remark 10.2. While the way we have proven the Theorem is rather abstract, it
does give us a somewhat concrete way of describing the trace: TODO

Recall that the maps ψp make Kcyc(C) to a cyclotomic spectrum with Frobenius
lifts for every stable ∞-category C. In particular they extend to an action of the
monoid T⋊N>0 . The underlying cyclotomic spectrum has the p-th Frobenius given
by the composition

Kcyc(C) ψp−→ Kcyc(C)hCp can−−→ Kcyc(C)tCp .

When we refer to Kcyc(C) as a cyclotomic spectrum we always mean this induced
cyclotomic structure.

Corollary 10.3. For every stable ∞-category C we get an induced map

Kcyc(C) → THH(C)
of cyclotomic spectra and thus using the map of Proposition 9.8 as a composite

K(C) → (Kcyc(C))h(T⋊N>0) → TC(Kcyc(C)) → TC(THH(C))
the trace in its ordinary incarnation.

Proof. Clear but we should given argument that its unique. □
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We can now also use he universal properties that we have established to deduce
the following nice result, initially proven by Dundas-McCarty

Corollary 10.4. The natural transformation

tr : Kcyc → THH

of functors Λst → Sp exhibits THH as the stablilization of Kcyc, i.e. induces an
equivalence (Kcyc)st → THH where (−)st is the construction described in Proposition
5.5.

Proof. This follows by noting that (Kcyc)st is a stable trace theory (since stabilization
clearly does by the given formula clearly not destroy the property of being a trace
theory). Then its initial among those, since its in principle initial among stable trace
theories that are additive, but additivity follows from being a stable trace theory as
shown in [?]. But this universal property is also satisfied by THH. □

Note that we do not only get a very abstract equivalence from the last corollary
but a rather concrete formula for THH in terms of K-theory, namely

THH(C) ≃ colim
n→∞

ΩnKcyc(C,Σn)

where the latter is Kcyc evaluated on the object

CΣn

in Λst as usual. A similar formula can be obtained for an arbitrary object in Λst.
Also note that it automatically follows that the equivalence

(Kcyc)st(C) ≃ THH(C)
is an equivalence of cyclotomic spectra. We want to end this section by a discussion of
the relation of this last result to the a slightly different stabilization of K-theory that
was introduced by Waldhausen. This relation is also nicely discussed by Dundas-
McCarty [?] but we include it for the sake of completeness. It also plays a role
in the proof of the Dundas McCarthy theorem relating K-theory and TC as nicely
explained in [?].

11. Generalized TR theory and a lift of the trace

Define TR and deduce the lift of the trace. This is given by the inclusion of the
rational Witt vectors into the Witt vectors.

TRn(C, F ) // TRn−1(C, F )

��

THH(C, F, . . . , F )tCp

12. The Lindenstrauss-McCarthy theorem

Show that the Goodwillie derivatives (in the Bimodule) of Kcyc are given by
TRn : Λst → Sp
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13. Symmetric monoidal structures

We show that Λst extends to an ∞-operad over (Λop)⊔ such that the functor
p : (Λst)⊗ → (Λop)⊔ is a coCartesian fibration of ∞-operads. In particular all the
fibres of Λst → Λop inherit symmetric monoidal strucutures. Moreover THH extends
to a lax monoidal functor

THH : (Λst)⊗ → Sp⊗

that sends p-coCartesian lifts to coCartesian lifts.

Appendix A. Adjoints and coCartesian fibrations

In this appendix we shall formulate a criterion for certain adjoints. We assume
that we have a coCartesian fibration X → S of ∞-categories and we consider a
functor ∞-category Fun(X, E) for some ∞-category E . Assume that for each s ∈ S
we have a Bousfield localization Ls : Fun(Xs, E) → Fun(Xs, E). We seek to find
a criterion under which we can ‘glue’ the Ls together to a Bousfield localization
L : Fun(X, E) → Fun(X, E).

Theorem A.1. Assume that for each edge s→ s′ in S the induced map

Fun(Xs′ , E) → Fun(Xs, E)
sends Ls′-local objects to Ls-local objects. Then there is a localization

L : Fun(X, E) → Fun(X, E)
such that for every s ∈ S the diagram

Fun(X, E) L //

res

��

Fun(X, E)

res

��

Fun(Xs, E)
Ls // Fun(Xs.E)

commutes and such that the L-local objects are precisely those functors F : X → E
such that each restriction F |Xs : Xs → E is Ls-local.

Appendix B. An idempotent criterion

Let C be an ∞-category and assume that we have a functor L : C → C with a
natural transformation η : id → L. Is is shown in [Lur09, Proposition 5.2.7.4] that
L is a Bousfield localization (i.e. the left adjoint onto a full subcategory LC ⊆ C) if
and only if the two induced natural transformations

L(η), η(L) : L→ L2

are equivalences. We shall prove a local criterion of this sort here. This criterion is
more or less standard, but we haven’t found it spelled out explicitly somewhere and
therefore we include a quick proof.

Proposition B.1. Assume that we have a functor L : C → C with a natural trans-
formation η : id → L and a full subcategory C0 ⊆ C such that for every object d ∈ C0

the map d → Ld is an equivalence. Assume moreover that for any object c ∈ C we

have that the two maps Lc→ LLc are equivalent as objects in C∆1
.

If for a given c ∈ C the object Lc is in C0 then the map c → Lc is initial among
all maps under c with target in C0.
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Proof. Consider the full subcategory C′ ⊆ C consisting of objects c ∈ C such that
Lc ∈ C0. Then L restricts to a functor C′ → C′. Moreover the map ηLc : Lc → L2c
is an equivalence for c ∈ C′. Therefore also the map L(ηc) is an equivalence since
it is equivalent in the arrow category. Thus we can apply the criterion described
above. □
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